[image: image1.png]

Writing Testable Requirements

Templates

These templates are derived from our Writing Testable Requirements (WTR) course and our Project Methodology Guidelines Systems Development Life Cycle. They may be used, in whole or in part, within your own guidelines as long as the copyright information is included:

© Copyright Bender RBT Inc. 2002, 2004, 2005, 2006, 2009, 2010, 2012, 2013, 2014
If you have any suggestions for additional topics which should be included in them please contact me at the email address below. I will update the templates and make them available on our web site.

It is assumed that the user has already taken the WTR course. If you have any questions about this material please contact:

Richard Bender

Bender RBT Inc.

17 Cardinale Lane

Queensbury, NY 12804

518-743-8755

518-743-8754 (fax)

518-506-8755 (cell)

rbender@BenderRBT.com
www.BenderRBT.com
TABLE OF CONTENTS
3INTENDED USE OF THIS DOCUMENT

4Objectives Document

7Requirements Specification

8Requirements Specification Summary

12Component Description - Data Store

15Component Description - Data Flow

18Component Description - Data Elements

19Introduction to Process Modeling

21Component Description - Use Case

24Component Description - Function

27Component Description - Actor / External Entity

30Creating Requirements Via An Iterative Approach

34Requirements Definition Process Overview

37Project Methodology Guidelines (PMG) - Naming Conventions

37Product Types:

38Product Qualifiers

39Status Qualifiers

39Product Qualifiers - Status

40Structuring the Name

 INTENDED USE OF THIS DOCUMENT

The intended use of this document is to provide a detailed template for the contents of the Objective Document and the Requirements Specification. The focus is primarily on software systems. However, much of what is discussed would apply to more hardware centric efforts as well. In such cases there would be additional classes of requirements.
The templates are intended to be tailored to specific projects, applications, and even specific process descriptions and data descriptions. Only those items that are applicable in a given instance need be addressed.

The templates can be used on projects where the requirements are primarily developed using MS Word or a similar mechanism. They also apply to projects using requirements management tools such as CaliberRM, RequisitePro, DOORS, etc.

 If the templates are being used in a Word based document it might be advisable to physically organize the information by requirement type (e.g. functional requirements in one section and performance requirements in another section). Such paper based requirements only afford one view of the information.

If the templates are being used in a requirements management (RM) tool environment then it might be organized by object (e.g. data object, process object). The requirements categories would then be properties of the object. For example, a process could have functional requirements, performance requirements, and security requirements. RM’s essentially are a database of requirements. As with any database, you can take different views of the data. Therefore, you might take a view of all of the security requirements or all of the usability requirements.

In deciding which specific requirements are applicable to a given process or data object the user might consider at what level in the hierarchy to specify them. For example, performance requirements usually address the overall throughput and response time of the application. Such requirements would be near or at the top of hierarchy. However, even primitive functions might have their own performance requirements (e.g. encrypt, decrypt).

Actually, a hierarchical view is somewhat simplistic. You might want to create multiple logical groupings of requirements to which to apply a global requirement. For example, you might create a group of all sensitive data and apply a specific set of security requirements to all of them. Each instance would inherit the global rule. This is easier in an RM than in a paper based model.

 Objectives Document

The focus of the Objectives Document is to define WHY the project is being undertaken and WHY the system or system enhancements are needed. It should describe the quantitative and qualitative desired return on investment. This will be used as the primary measure of success for the project and system.

In the discussion below the Users are those within your company that will be using the system. IT is the group that produces the system. IT includes their sub-contractors. Vendors are third parties who supply software and hardware to IT and the Users. It includes those that develop COTS products (i.e. packages). Customers are those external to your company who might also use the system and/or are affected by the system. For example, in B2B both Users and Customers would use the system. However, some aspects of operational support systems would be used solely by the Users but its effectiveness, or lack thereof, would significantly impact the Customers.

While one document, the various sections might be filled in by various people. For example, the various parties might each identify their own goals. A financial analyst might create the cost/benefit analysis.

Name:
Objectives Document
Alias:
Business Requirements

Project Charter
Date:
March 3, 2009
Version:
5.2
Purpose:
To document the business reasons for embarking on the project
and to provide a yardstick by which to measure the success of the
project.

COMPOSITION

1.
Introduction. (A brief overview of the contents of the Objectives Document.)

2.
Departments/Products.

2.1
Relevant Departments/Systems. (The list of the various systems and
departments which will be involved in one way or another in this project. This might include selected external customers.)

2.2
Representatives. (The list of individuals who will represent each of the
above areas and what their responsibilities are.)

3.
Business Context. (The overall situation analysis/business environment of which
the project is part.)

4.
Project Goals. (The qualitative and quantitative results the business expects to
achieve as a result of successfully completing this project. The fully qualified goals also address any time or budget constraints.)

4.1
Users’ Goals. (The results the user would like to achieve in
deploying the system.)

4.2
IT’s/Vendors’ Goals. (The results IT hopes to achieve in producing the
system.)

4.3
Customer’ Goals. (The results the customers would like to achieve
as a result of the deployed system.)

5.
Problems. (Issues with the current system or environment which might be
rectified by the new system solution. Often these are just the negative way of stating the project goals or desired functionality. However, just as often not all problems will be solved by a given project. This section helps manage expectations by delineating which existing problems will or will not be addressed.)

6.
Cost/Benefit Analysis. (The primarily financial evaluation of the project.)

6.1 User/Customer Cost/Benefit Analysis.

6.1.1 Gross Benefits. (The area of opportunity.)

 6.1.1.1 Quantitative Benefits.

 6.1.1.2 Qualitative Benefits.

6.1.2 Costs.

 6.1.2.1 Acquisition Costs. (The costs of purchasing/licensing
 the products.)

 6.1.2.2 Installation Costs. (The costs of installing the new
 system solution.)

 6.1.2.3 Operational Costs. (The on-going costs of running the
 system in production.)

6.1.3 Net Benefits. (Gross benefits minus costs.)

6.2 IT/Vendor Cost/Benefit Analysis.

6.2.1 Gross Benefits. (The area of opportunity.)

 6.2.1.1 Quantitative Benefits.

 6.2.1.2 Qualitative Benefits.
6.2.2
Costs.

 6.2.2.1 Development Costs. (The costs of creating the new
 system solution.)

 6.2.2.2 Support Costs (The expected maintenance costs.)
 6.2.2.3 Marketing Costs. (The costs of selling the product.)

 6.2.2.4 Field Support Costs. (The costs of providing technical
 support to the customers.)

6.2.3
Net Benefits. (Gross benefits minus costs.)

7.
Risk Assessment.

7.1
User Risk Assessment.

7.1.1 Active Risk Assessment. (The problems the users

must overcome and the probability of overcoming them and achieving the user goals if the project is undertaken and the system is deployed.)

7.1.2 Passive Risk Assessment. (The problems that may arise,
with their associated probabilities, if the project is not undertaken and the system is not deployed.)

7.2
IT/Vendor Risk Assessment.

7.2.1 Active Risk Assessment. (The problems IT must
overcome and the probability of overcoming them and achieving IT’s goals if the project is undertaken and the system is deployed.)

7.2.2 Passive Risk Assessment. (The problems that may arise,
with the associated probabilities, if the project is not undertaken and the system is not deployed.)

7.3.
Customer Risk Assessment.

7.3.1 Active Risk Assessment. (The problems the customer
must overcome and the probability of overcoming them and achieving the customer goals if the system is deployed.)

7.3.2 Passive Risk Assessment. (The problems that may arise, with the

associated probabilities, if the project is not undertaken

and the system is not deployed.)

8.
References. (The list of documents, including their date and/or version number, used to create this document.)

9.
Update History. (A log of the changes to the document.)

10.
Signoffs. (The signatures and date of signature of each of the representatives identified above.)

 Requirements Specification

Requirements define WHAT the system must do. They should be defined from the User’s perspective. A User may be a person. It may also be another system – software or hardware. It presents a “black box” view of the behavior of the system. That is, interfaces are physical and the internals are logical. For example, users care what screens look like. How would you even define a “logical screen”? However, once they hit enter, all they care about is what rules the system will follow in transforming the data and/or initiating actions. They do not care what language the system is written in or what operating system is used. In engineering terms this is an External Specification.

Traditionally requirements have been written at a high level, with the details left to the design document. Unfortunately, design documents are written in technical terminology and usually not readable by the domain experts. Therefore, the detailed application rules cannot be validated as being correct or complete.

Requirements must be written at a fully deterministic level of detail. For each scenario, a reader should be able to follow the rules as specified in the requirements document and be able to fully determine the expected results, right down to the exact values of all data elements modified and all system state changes.

Some may argue that it would take too long to write such requirements. The reality is that, by the time the system has been coded, this level of requirement has actually been achieved. The work was not avoided; it was just deferred. Since the detailed rules could not be validated until Acceptance Test or even Production, the result has been a lot of scrap and rework.

Moving this effort up front into requirements definition means that it will take a bit longer to create the Requirements Specification. However, the time and effort required to reach the key checkpoint – ready to deploy – is moved up significantly. This occurs for two reasons. The first is minimizing scrap and rework since the requirements are not defined after the fact. The second is that there is more concurrency in executing the project. Analysts, designers, and testers can all work on their pieces at the same time. Their efforts support each other. Test case design gives the analysts feedback on the clarity and logical consistency of the requirements. Design gives the analysts feed back on the technical feasibility of the requirements. The process is iterative, not a waterfall approach.

It also results in a much higher quality system. Since the majority of system defects have their origin in poor requirements, testing the requirements eliminates a huge source of problems. Good requirements result in good designs and code, again eliminating defects. Well defined requirements with strong processes for creating and validating the requirements can result in an overall 30% reduction in the cost to deliver and the time to deliver while reducing defects in production to close to zero.

As stated above, the Requirements Specification is a black box view of the system. These black views can be done at multiple levels. You can treat the entire system, including all of the manual and automated components, as a single black box. You then partition the system into components. Manual components take the form of departments with their respective methods and procedures. Automated components take the form of applications. Automated components can be software and/or hardware. At each level of decomposition you have a black box view. For off the shelf features this can even extend down to a primitive function.

While the focus of the Requirements Specification is primarily logical, except at the interfaces, it may include physical attributes. Physical attributes should only be included in the requirements if the designer has no choice but to conform to them. For example, it may be company policy that certain data must be stored on a specific set of highly secured disk drives to ensure recovery in the event of a disaster. The designer has no choice to choose an alternative approach. In this case putting the data on those drives is a requirement. Anytime physical attributes are included in the Requirements Specification, it limits the design options and flexibility. Therefore, care should be taken before making such entries. They should be carefully reviewed.

 Requirements Specification Summary

Name:
Requirements Specification

Date:
February 6, 2012
Version:
8.0
Aliases:
External Specification

Logical Specification

 Purpose:
To describe the requirements of the system from the perspective of
the user of the system.

Description:
The document describes functional, performance, usability, reliability, availability, serviceability, portability, localization, testability, maintainability and extensibility requirements.

It describes processes, data stores, data flows, and external entities. The external interface is defined in physical terms while the insides are described primarily in logical terms.

COMPOSITION

1. System View. (A non-redundant, “normalized” view of the processes and data in the
total system - manual and automated. This information acts as a context for analysis and as a cross-reference into the system components.)

1.1 Context. (Diagrams which identify the systems external to the system with
which it interfaces and which identifies those interfaces. It may also include a picture of how the system decomposes into subsystems.)

1.2 Requirements Summary. (A brief overview of the major requirements of the
complete product.)

1.2.1
Functional Requirements Summary.

1.2.2
Performance Requirements Summary.

1.2.3
Usability Requirements Summary.

1.2.4
Reliability, Availability, Serviceability Requirements

 Summary.

1.2.5
Portability Requirements Summary.

1.2.6
Localization Requirements Summary.

1.2.7
Testability Requirements Summary.

1.2.8
Maintainability Requirements Summary.

1.2.9
Security Requirements Summary.

1.2.10
Extensibility Requirements Summary.

1.3 Process Model.

1.3.1. Process Hierarchy Chart. (A diagram of all the processes in the
system, plus a brief description of each process.)

1.3.2. Use-Case List. (A list and brief description of all the

use-cases and their triggers, e.g. end of month, which

invoke the functions.)

1.3.3. Use-Case Cross Reference. (A cross reference of the use-cases
to the subsystems which include them. Also a cross reference to the physical components which implement them.)

 1.3.4 Function List. (A list and brief description of all of the

functions.)

1.3.5. Functional Cross Reference. (A cross reference of the
functions to the use-cases in which they appear.)
1.4 Data Inventory.

1.4.1 Data Classes/Entities. (A definition of each of the major logical
groupings of data.)

1.4.2 Data Class/Entity Relationships. (An entity-relationship
diagram and brief description of the interrelationships
between the classes of data.)

1.4.3 Data Element List. (A list of the normalized data
elements with a brief description of each.)

1.4.4 Data Element Cross Reference. (Cross reference of the
normalized data elements with the data structures they appear in.)

1.5 External Entity Descriptions. (The description of the systems with which
this product interfaces. See “Component Description - External Entity” for the detailed contents.)

2. Subsystem View. (A primarily “logical” view of each manual and automated
subsystem. However, interfaces to the subsystems are described in physical terms. Also, physical properties which are not optional are retained in this description. For example if the company is required by law to use a particular form it must retain the form in the new system. Therefore, its description would be a full physical description instead of “logicalizing” it since it cannot be repackaged.)

2.1 Subsystem Requirements Summary. (A brief description of the major
requirements for each subsystem.)

2.1.1
Functional Requirements Summary.

2.1.2
Performance Requirements Summary.

2.1.3
Usability Requirements Summary.

2.1.4
Reliability, Availability, Serviceability Requirements

Summary.

2.1.5
Portability Requirements Summary.

2.1.6
Localization Requirements Summary.

2.1.7
Testability Requirements Summary.

2.1.8
Maintainability Requirements Summary.

2.2.9
Security Requirements Summary.

2.1.10
Extensibility Requirements Summary.
2.2 Process Model. (A diagrammatic inventory of the functions in the subsystem.)

2.3 Data Flow Diagrams. (A diagram of how data passes through the subsystem.)

 2.4 Function Descriptions. (The detailed definition of each function in the
subsystem. See “Component Description-Function”.)

 2.5 Use-Case Descriptions. (The detailed definition of the events and their

triggers within each subsystem. See “Component Description –

Use-Case” for detailed contents.)

2.6 Data Structures Descriptions. (The detailed definition of the data in each of the
subsystems. See “Component Description - Data Flow” and “Component Description - Data Store” for detailed contents.)

2.7 External Entity Descriptions. (The definition of systems external to this system
with which this subsystem interfaces. See “Component Description - External Entity” for contents. If these are adequately defined at the system level then a list of them with a pointer to the description in the System View is sufficient.)

3. Risks

 3.1 Risk Assessments. (The identification of potential risks and their impacts)

 3.2 Risk Mitigation. (How the identified risks will be eliminated and/or contained)

4. Rejected Alternatives (A description of other project scopes/directions considered and
why they were rejected.)
5. Update History. (An “audit trail” of all the revisions to the External Specification.)

6. References. (The list of documents used as source material to create this
specification.)
7. Signoffs. (The signatures and date of signature of each of the appropriate
representatives for the various groups/companies.)

 Component Description - Data Store

Data can be characterized as data structures and data elements. Data structures consist of two subclasses: data stores and data flows. Data stores are data at rest – e.g. a database. Data flows are data in movement – e.g. a message going over the communications line. The two data structures have similar properties while having some unique ones.

Name:

Data Store

Date:

June 24, 2013
Version:
6.2
Purpose:
To provide a list of the properties which describe a collection of data at

rest. This includes databases, screens, and reports.

COMPOSITION

1. Identification:

1.1 Name.
1.2 Identifier
1.3 Date.

1.4 Version Number.

1.5 Alias(s).

1.6 Purpose/Significance.

1.7 Description.
1.8 Revision History

2. Traceability:

2.1 Parent/Child. (If the data store is a subclass of a larger entity and/or contains subclasses, identify the parent/child entity(s).
2.2 Derivative Line. (The traceability links across the various physical and logical models from which this entity was created – origins – and what other entities were derived from it – destination.)
2.2.1 Requirements.

2.2.2 Design.
2.2.3 Tests

2.2.4 Etc. (I know this is a bad word but many things can be derived from requirements objects.)
2.3 Views. (Ordered subsets of the data that will taken of this data entity)
2.4 Model(s). (Identifies which systems share this entity.)
2.5 Information Sources - Documents (Identifies which documents were the sources for the information for this entity.)
3. Design Axioms. (If there were alternative ways to package the data into entities, this

 entry describes why this particular packaging was decided on.)
4. Composition

4.1 Census.

4.2 Access Organization.

4.2.1
Key Structure.

4.2.2
Organization Within Keys.

4.2.3
Pointer Structure.

4.3 Syntax/Structure.
4.4 Inter-attribute constraints
4.5 Sample.

5. Processing Characteristics:

5.1 Volume (Average/Min/Max; Current/Projected).

5.2 Access.

5.2.1 Periodicity Of Access.

5.2.2 Volume Of Access (Read, Update, Delete, Add).

5.2.3 Method(s).

5.2.3.1 General Type (Sequential, Random, Index).

5.2.3.2 Specific Type.

5.3 Maintenance.

5.3.1 Retention Period, Conditions, Generations.

5.4. Security.

5.4.1 Criteria (Type Of Access, Type Of Process, Type Of Agent).

5.4.2 Method (Password Encryption).

5.4.3 Certifications

5.4.4 Contact

5.5 Integrity.

5.5.1 Reliability.

5.5.2 Availability.

5.5.3 Serviceability
5.5.4 Expiration Date.
6. Data Storage Characteristics (Note that these are physical attributes):

6.1 Medium.

6.2 Size (Unit Dimensions).

6.3 Encoding Methods (ASCII, Encryption, Compressed).

6.4 Storage.

6.4.1
Type.

6.4.2
ID of Storage Component.

6.4.3
Location.

6.4.4
Volume Requirements.

6.4.5
% Capacity Required (Min/Max/Avg).

6.4.6
Reliability.

6.4.7
Availability.

6.4.8
Serviceability.

6.4.9
Environment.
6.4.10 Expiration Date.
6.5 Security

6.5.1 Server Location
6.6 Rationale (Why this physical component is required).
7. Costs:

7.1 User/Customer Costs.

7.1.1
Costs Per Data Structure (e.g. Record).

7.1.2
Costs Per Data Store (e.g. Data Base).

7.1.3
Costs For Availability.

7.2 IT/Vendor Costs.

7.2.1
Cost Per Data Structure.

7.2.2
Cost For Availability.

8. Value:

8.1 User/Customer Value.

8.1.1
Replacement Cost.

8.1.2
Fair Market Value (Purchase; Use).

8.1.3
Business Value.

8.2 IT/Vendor Value (Done at system or system feature level).
8.3 Criticality (Impact if lost or inaccurate).

9. Staffing

9.1 Owner(s)
9.2 Author(s)
9.3 Reviewers

9.4 Information Sources - People

9.5 Approvals (signature, name, title, date)

10. Notes

10.1 Temporary Notes (Things to factor in / consider when it comes time to write the detailed data description.)

10.2 Extensibility Notes (Requirements for future releases. This can address any of the attributes of the data store – composition, volume, etc.)

Component Description - Data Flow

Where the description of the item is unchanged from that used in the above data store definition, it is not repeated here.

Name:

Data Flow

Date:

June 24, 2013
Version:
5.2
Purpose:
To provide a list of the properties which describe a collection of data
moving between two or more points. This includes data packets and parameters strings passed between processes. In a manual subsystem it can include letters sent in the mail.
1. Identification:

1.1 Name.
1.2 Identifier
1.3 Date.

1.4 Version Number.

1.5 Alias(s).

1.6 Purpose/Significance.

1.7 Description.
1.8 Revision History

2. Traceability:

2.1 Parent/Child.

2.2 Derivative Links.
2.2.1 Requirements.

2.2.2 Design.
2.2.3 Tests

2.2.4 Etc.
2.3 Data Source Component(s). (Where the data originates from.)
2.4 Data Sink Component(s). (Where the data is sent to.)
2.5 Model(s).

2.6 Information Sources - Documents.

3. Design Axioms.

4. Composition

4.1 Census.

4.2 Organization (Inter-Data Flow).

4.2.1
Key Structure.

4.2.2
Organization Within Key.

4.2.3
Inter-Record Structure.

4.3 Syntax/Structure (Intra-Data Flow).
4.4 Inter-attribute constraints
4.5 Sample.

5. Processing Characteristics:

5.1 Rate Of Flow.

5.1.1
Volume (Average/Min/Max; Current/Projected).

5.1.2
Periodicity.

5.1.3
Transfer Rate.

5.2 Security.

5.2.1
Criteria.

5.2.2
Method.

5.2.3 Certifications

5.3 Integrity/Reliability.

5.3.1
Tolerance Criteria.

5.3.2
Method.
5.3.3 Expiration Date.
6. Data Connection Characteristics:

6.1 Medium.

6.2 Size.

6.3 Encoding Method.

6.4 Connection Requirements.

6.4.1
Type.

6.4.2
ID of Connection(s).

6.4.3
Source/Sink Points.

6.4.4
Flow Requirements.

6.4.5
% Capacity Used.

6.4.6
Reliability.

6.4.7
Availability.

6.4.8
Serviceability.

6.4.9
Environment.
6.4.10 Expiration Date.
6.5 Security
6.6 Rationale
7.
Costs:

7.1 User/Customer Costs.

7.1.1
Cost Per Flow.

7.1.2
Cost For Availability Of Connection.

7.2 IT/Vendor Costs.

7.2.1
Cost Per Unit.

7.2.2
Cost For Availability.

8. Value:

8.1 User/Customer Value.

8.1.1
Replacement Cost.

8.1.2
Business Value.

8.2 IT/Vendor Value (Done at system level or feature level).
8.3 Criticality (Cost if lost or inaccurate).

9. Staffing

9.1 Owner(s)

9.2 Author(s)
9.3 Reviewers

9.4 Information Sources - People

9.5 Approvals (signature, name, title, date)

10. Notes

10.1 Temporary Notes (Things to factor in / consider when it comes time to write the detailed data description.)

10.2 Extensibility Notes (Requirements for future releases. This can address any of the attributes of the data flow – composition, volume, etc.)

 Component Description - Data Elements

Name:
Data Element

Date:
March 5, 2009
Version: 4.1
Purpose: To provide a list of the properties which describe an individual data element.

CROSS REFERENCE

Parents: Component Description - Data Flow

 Component Description - Data Store

COMPOSITION

1. Identification:

1.1 Name.
1.2 Identifier
1.3 Date.

1.4 Version Number.

1.5 Alias(es).

1.6 Purpose/Significance.

1.7 Description/Contents.

1.8 Domain Rules.

1.9 Relational Rules

2. Traceability:

2.1 Parent(s).

2.2 Derivative Links.

2.2.1.
Requirements.

2.2.2.
Designs.
2.2.3 Tests.

2.2.4 Etc.
2.3 Model(s).

2.4 Information Sources.
 Introduction to Process Modeling

Data structures were decomposed into two subclasses: data stores and data flows. Similarly, processes can be decomposed into two subclasses: use-cases and functions.

Use-cases have the following characteristics:

They represent a complete unit of work from the user’s perspective.

They know the context and when the task is complete.

They do the commits which lock in the updates to the data.

They are composed of Triggers + Processing Rules + Context Dependent
Parameters

Triggers, which initiate the use-case, come in three types:

Time Triggers, State Triggers, Transaction Triggers

Functions have the following characteristics:

They are context independent

They either transform data - e.g., calculate interest - and/or

determine the state of data - e.g., validate the account number.

They are composed of the Processing Rules + Generic Parameters.

This split between the context dependent and context independent processes ensures a high degree of reuse within and across systems. It is the functions, being context independent, that are the most reusable. Note that standard UML does have the concept that a use-case can include another use-case or that a use-case can extend another use-case. However, when everything is called a use-case there is less clarity between this key split of context dependence versus context independence.

Looking at a simple example to help clarify this consider this simplified automated teller machine (ATM) problem.

[image: image2.png]Automated

Functions Teller
Machine

Verify Verify Debit Credit
Customer Account Account Account
) 2) ®3) “4)

Use Cases (Functions Invoked):

- WITHDRAW_MONEY (1,2,3)
- DEPOSIT_MONEY (1,2, 4)
- TRANSFER_MONEY (1,2,3,2,4)

ATM – Process Model

Customer one comes along and they want to Withdraw Money. To do this they enter their PIN (Verify Customer), select the account the wish to take the money from (Verify Account), and withdraw the money (Debit Account).

Customer two wants to Deposit Money. Again they begin by entering their PIN (Verify Customer). Again they select the account (Verify Account). Only this time they deposit money (Credit Account).

Customer three wants to Transfer Money. Once again they begin by entering their PIN. The Verify Customer function is the same one as in the other two use-cases. We do not want to write the detailed rules for this process three times. We “normalize” it out and make it a common function. This function does not care what the context is. It has a fixed set of rules for determining what constitutes a valid customer. It just comes back with a YES/NO answer. It is up to the context dependent use-case to decide what to do with the information. In the Withdraw Money and Transfer Money use-cases a NO answer would cause the event to end. However, in the Deposit Money use-case it could continue. In general banks allow you to deposit money into an account even if it is not yours. You just need the account number. A more sophisticated ATM could allow this just like it happens when you do it with a teller in the bank.

In the Transfer Money use-case there could be multiple triggers. For example, it could be set up to transfer money on the first of the month, every month (a time trigger). It could be set so that any time the second account’s balance falls below a certain amount, money is transferred from the first account (a state trigger). Finally, the customer can just tell the system to do it now via the ATM or by writing a check (a transaction trigger). Even though the trigger is different in each case, it is the same use-case.

An analogy to cooking might help clarify this distinction between a use-case and a function. Each recipe (i.e. use-case) is composed of multiple steps (i.e. functions). One step in a recipe may ask the cook to clarify butter. The clarify butter step could be used in a cake recipe. It could also be used in a chicken recipe. The clarify butter step is a function. It does not care what the clarified butter will be used for. The cake recipe and the chicken recipe are use-cases. When the recipe has been fully executed you have a completed unit of work – a dish you can serve.

 Component Description - Use Case
Name:
Use Case

Date:
June 24, 2013
Version:
 6.2
Purpose:
To provide a list of the properties which describe a coherent task which
performs useful work from the user’s perspective (e.g., open a new
account).

Description:
A use case is composed of a unique sequence of processes, with specific
parameter values and a triggering action (e.g., a transaction; a timer
interrupt).

COMPOSITION

1. Identification:

1.1 Name.
1.2 Identifier
1.3 Date.

1.4 Version Number.

1.5 Alias(s).

1.6 Purpose/Significance.

1.7 Description.
1.8 Revision History

2.
Traceability:

2.1 Parent/Child.

2.2 Derivative Links.

2.2.1
Requirements.

2.2.2
Designs.
2.2.3 Tests

2.2.4 Code

2.2.5 Etc.
2.3 Model(s).

2.4 Inputs/Outputs. (The inventory of the context specific parameters for the

use-case.)
2.5 Information Sources - Documents.

3. Design Axioms/Rules.

4. Composition:

4.1 Functions. (The ordered list of the processes invoked by this use case
including the control logic algorithm that governs their execution.)

4.2 Triggers. (Description of the data, conditions, or other stimuli that initiates
the use case.)

4.3 Process Parameters. (Using/Giving: The context dependent parameters
passed to and received back from the sub-ordinate processes.)

4.4 Pre-Conditions (The assumptions about the state of the inputs and the system

state when the use-case is initiated.)
4.5 Post-Conditions (The state of the outputs and the system when the use-case

is completed.)
5. Processing Characteristics:

5.1 Periodicity.

5.2 Volume Of Data Processed.

5.2.1 Inputs Per Unit Of Time Or Cycle.

5.2.2 Outputs Per Unit Of Time Or Cycle.

5.3 Rate Of Processing Data.

5.3.1
Time To Process Input Into Output.

5.3.2
Periodic Throughput Rates.

5.4 Processing Window.

5.5 Security.

5.5.1 Criteria.

5.5.2 Method.

5.6 Integrity.

5.6.1 Tolerance Criteria (R.A.S.).

5.6.2 Method.
5.6.3 Expiration Date.

5.7 Priority.

6. Processor Characteristics:

6.1 Type.

6.2 ID.

6.3 Location(s).

6.4 Number (CPU/Departments).

6.5 Size (Lines Of Code/# People).

6.6 % Utilization of Capacity.

6.7 Required Features/Skills.

6.8 Reliability.

6.9 Availability.

6.10 Serviceability.

6.11 Environmental Requirements.

6.12 Security.
6.13 Expiration Date.

6.14 Rationale
7. Costs:

7.1 User/Customer Costs.

7.1.1 Costs Per Use Case Processed.
7.1.2 Costs Per Unit of Time.
7.2 IT/Vendor Costs.

7.2.1 Costs Per Use Case Processed.
7.2.2 Costs Per Unit of Time.
8. Value:

8.1 User/Customer Value.

8.1.1 Fair Market Value.

8.1.2 Business Value.

8.2 IT/Vendor Value (Done at the system or feature level).

8.3 Fair Market Value.

8.4 Business Value.
8.5 Criticality (Impact of defects).
9. Staffing

9.1 Owner(s)

9.2 Author(s)
9.3 Reviewers

9.4 Information Sources - People

9.5 Approvals (signature, name, title, date)

10. Notes

10.1 Temporary Notes (Things to factor in / consider when it comes time to write the detailed process description.)

10.2 Extensibility Notes (Requirements for future releases. This can address any of the process attributes – functional, performance, etc.)

 Component Description - Function
Name:
Function

Date:
June 24, 2013
Version:
6.2
Purpose:
To provide a list of the properties which describe the portions of a system

which transform data or determine the state of data.

COMPOSITION

1. Identification:

1.1 Name.
1.2 Identifier
1.3 Date.

1.4 Version Number.

1.5 Alias(s).

1.6 Purpose/Significance.

1.7 Description.
1.8 Revision History

2. Traceability:

2.1 Parent/Child.

2.2 Derivative Links.

2.2.1
Requirements.

2.2.2
Designs.
2.2.3 Tests

2.2.4 Code

2.2.5 Etc.
2.3 Model(s).

2.4 Inputs/Outputs. (The inventory of the context specific parameters for the

function.)
2.5 Information Sources - Documents.

3. Design Axioms/Rules.

4. Composition

4.1 Census. (Unordered List Of Subordinate Processes.)

4.2 Generic I/O Parameter List.

4.3 Algorithm.
4.4 Pre-conditions

4.5 Post-conditions
5. Processing Characteristics:

5.1 Periodicity.

5.2 Volume Of Data Processed.

5.2.1 Inputs Per Unit Of Time Or Cycle.

5.2.2 Outputs Per Unit Of Time Or Cycle.

5.3 Rate Of Processing Data.

5.3.1
Time To Process Input Into Output.

5.3.2
Periodic Throughput Rates.

5.4 Processing Window.

5.5 Security.

5.5.1 Criteria.

5.5.2 Method.

5.6 Integrity.

5.6.1 Tolerance Criteria (R.A.S.).

5.6.2 Method.
5.6.3 Expiration Date.
5.7 Priority.

6. Processor Characteristics:

6.1 Type.

6.2 ID.

6.3 Location(s).

6.4 Number (CPU/Departments).

6.5 Size (Lines Of Code/# People).

6.6 % Utilization Of Capacity.

6.7 Required Features/Skills.

6.8 Reliability.

6.9 Availability.

6.10 Serviceability.

6.11 Environmental Requirements.

6.12 Security.
6.13 Expiration Date.

6.14 Rationale.
7. Costs:

7.1 User/Customer Costs.

7.1.1 Cost Per Item Processed.

7.1.2 Cost Per Unit Of Time.

7.2 IT/Vendor Costs.

7.2.1 Cost Per Unit.

7.2.2 Cost For Availability.

8. Value:

8.1 User/Customer Value.

8.1.1 Replacement Cost.

8.1.2 Fair Market Value.

8.1.3 Business Value.

8.2 IT/Vendor Value (Done at a system or feature level).
8.3 Criticality (Impact of defects).
9. Staffing

9.1 Owner(s)

9.2 Author(s)
9.3 Reviewers

9.4 Information Sources - People

9.5 Approvals (signature, name, title, date)

10. Notes

10.1 Temporary Notes (Things to factor in / consider when it comes time to write the detailed process description.)

10.2 Extensibility Notes (Requirements for future releases. This can address any of the process attributes – functional, performance, etc.)

 Component Description - Actor / External Entity

Name:
Actor / External Entity

Date:
June 24, 2013
Version:
 6.2
Purpose:
To provide a list of the properties which describe a person/system outside
of the scope of this product/system but which uses/interfaces to this

system.

COMPOSITION

1. Identification:

1.1 Name.
1.2 Identifier
1.3 Date.

1.4 Version Number.

1.5 Alias(s).

1.6 Purpose/Significance.

1.7 Description.
1.8 Revision History

2. Traceability:

2.1 Parent/Child.

2.2 Derivative Links.

2.2.1
Requirements.

2.2.2
Designs.
2.2.3 Tests

2.2.4 Code

2.2.5 Etc.
2.3 Model(s).

2.4 Inputs/Outputs.
2.5 Information Sources.

3. Design Axioms/Rules.

4. Processing Characteristics:

4.1 Periodicity.

4.2. Volume Of Data Processed.

4.2.1 Inputs Per Unit Of Time By Period.

4.2.2 Outputs Per Unit Of Time By Period.

4.3 Rate Of Processing Data.

4.3.1 Time To Process Input To Output.

4.3.2 Periodic Throughput Rates.

4.4 Processing Windows.

4.5 Pre-conditions

4.6 Security.

4.5.1 Criteria.

4.5.2 Method.

4.7 Integrity.

4.6.1 Tolerance Criteria (R.A.S.).

4.6.2 Method.
4.6.3 Expiration Date.
4.8 Priority.

5. Processor Characteristics:

5.1 Type.

5.2 ID.

5.3 Location.

5.4 Number (CPU/Departments).

5.5 Size.

5.6 % Utilization.

5.7 Required Features.

5.8 R.A.S.

5.9 Environment.

5.10 Security
5.11 Expiration Date

5.12 Rationale
6.
Costs:

6.1 User/Customer costs.

6.1.1 Cost Per Item Processed.

6.1.2 Cost Per Unit Of Time.

6.2 IT/Vendor Costs.

7. Value:

7.1 User/Customer Value.

7.1.1 Replacement Cost.

7.2 IT/Vendor Value.

7.2.1 Replacement Value.
7.3 Criticality (Impact of defects).
8. Staffing

8.1 Owner(s)

8.2 Author(s)
8.3 Reviewers

8.4 Information Sources - People

8.5 Approvals (signature, name, title, date)

9. Notes

9.1 Temporary Notes (Things to factor in / consider when it comes time to write the detailed process description.)

9.2 Extensibility Notes (Requirements for future releases. This can address any of the process attributes – functional, performance, etc.)
 Creating Requirements Via An Iterative Approach

Requirements evolve as our understanding of the problem evolves. Our first goal is to ensure that the scope of the project is well understood. This creates, in essence, the outline of the Requirements Specification. Unfortunately, what happens in many project life cycles is that this high level view of the requirements becomes a separate document from the detailed requirements. This may happen a number of times resulting in the requirements being spread across many documents. As each step occurs the scope can change but that is difficult to verify. Mapping the requirements from one document to another creates a nightmare of traceability. It also makes it difficult to distinguish between changes of scope and clarification. The problem is that too many life cycles tightly couple a project phase with a deliverable that represents everything learned during that phase.

[image: image3.png]

Waterfall Life Cycle

In the above diagram, the Phase 1 Specification is the “everything we know about the system” document. Then the Phase 2 Specification is the “everything we NOW know about the system” document. This feeds into the third phase and results in a new “everything we NOW know about the system document”. Rarely, if ever, does anyone organize data in a system based on WHEN they learned about it. There is no 6am database versus the noon database versus the 6pm database versus the midnight database. Data is organized by subject matter. As we learn more about a given entity we add it to that same database.

This is reflected in an iterative life cycle. An iterative life cycle recognizes that projects are research and development. As long as you are doing research, you do not know how long the project will take, how much it will cost, and (if it pushing the limits of technology) whether you can even do it or not.

[image: image4.png]Szl (ntEnmal (FpIEmentation

SHEC SHEC SPEG
SPEG) SPEL: SPIEL)

Iterative Life Cycle

During Phase 1 of an iterative life cycle, the Requirements Specification (External Specification) would be filled in only at an outline level. Based on this information the Design Specification (Internal Specification) would be defined at an architecture level. Similarly the approaches to address the implementation of the system (i.e. data conversion, training, production cutover, testing, hardware/software installation, and facilities installation) would be defined to the same level of detail as was done in the requirements and design. This is critical to proper scoping and estimating. For example, on some projects data conversion can cost more than the rest of the project combined. If this is not addressed early, the developers and users are in for a big surprise later in the project.

Looking at the data model, the first iteration would result in identifying the entities and the entity relationships. The second iteration would identify the data elements/attributes for each data entity. The third iteration would complete the data model by defining the domain and relational rules for each attribute. The first level creates the table of contents for the second level; the second level forms the table of contents for the third level.

If, while working on the second level, new entities or entity relationships are identified, you now clearly have a change of scope. If, while working on the third level, new attributes – or even worse new entities – are identified, you have a change a scope. Change versus clarification is now very well controlled. This is especially critical in dealing with vendors. To the user everything seems to be clarification. To the vendor (and that includes IT) everything is a change of scope.

An iterative approach has a major advantage to the business. It allows you to make more intelligent go / no go decisions because the estimates will be based on more complete and more accurate information. In the diagram below we see the relative amount of effort, per topic, across the various phases. The fourth topic on the diagram, Field Support, covers such topics as release distribution, production defect management, and on-going training needs as production staff turnover occurs. Within a topic (e.g. requirements), the first 10% of the effort is the research portion. The scope is defined. After that the effort involves filling in the blanks. The relative effort across topics (e.g. requirements versus design) is much less fixed. As noted before, sometimes a single topic, like data conversion, can be bigger than the entire rest of the project.

Following a waterfall life cycle delays the point at which the research portion of the project is completed. You do all of the requirements (10 units of work), all of the design (10 more units of work), all of the implementation planning (10 more units of work). Then you finally start looking at field support issues (e.g. updating production software across thousands of points around the world) and you discover a major cost and/or technical issue that puts the feasibility of the project at risk.

The problem is that 31/40th of the money has already been spent. You are not getting this back. Your decision to go on might be based on trying to minimize how much you will lose as a result of this project. There is no way to get a positive return.

Applying an iterative life cycle, you would be 4/40th into the project, in the worse case, before you had an accurate understanding of the scope, costs, technical feasibility, and probable return on investment. If there is something that says that the business goals cannot be achieved, you would know this early with a minimal of expenditure.

Change control is much stronger since the deliverables are placed under change management at the phase checkpoints without waiting until the fully detailed version is available.

[image: image5.png]Layered Approach

\ \
I 1 \) 4 \) 5 | Requirements
A} A}
\ \ .
| 1 \ 4 \ 5 | Design
\ \
| 1 \ 4 \ 5 | Implementation
\ \
| 1 \\ 4 \\ 5 | Field Support

\ \
Preliminary General | Detailed
I | |

T T
Research Development

Investment Till Research Complete

Sequential Life Cycle — 3] / 40
Iterative Life Cycle — /] / 40

 Requirements Definition Process Overview

The following is a brief overview of the process for creating and validating the Requirements Specification.

1. Define the Objectives for the project and the system / system enhancement.

2. Identify the various user/customer groups and systems within the scope of the project.

3. For each group and system define Scenarios (e.g. examples of tasks and events the system will have to support).

4. Identify the Use-Cases using the Scenarios.

5. For each Use-Case identify the steps required to support it.

6. Package the steps into Functions.

7. Finalize the Initial Process Model, which denotes the Use-Cases and the Functions in a non-redundant manner, for this release. This gives you the process inventory.

8. Identify the data entities and entity relationships which need to be created and/or modified.

9. Reconcile the data model to the process model.

10. Identify the other high level requirements (e.g. performance, security) and add them to the preliminary requirements definition.

11. Identify the Extensibility based processes and data and add them the release based Initial Process Model.

12. Address the other classes of requirements for extendibility consideration.

13. Reconcile the requirements against the Objectives.

14. Create an Architecture, and/or identify the impact to existing systems, to support the initial requirements

15. Validate the preliminary Requirements Specification against the architecture.

16. Identify any design dependent issues which must be reflected in the requirements. Update the requirements as necessary.

17. Define, at a high level, the approach to system implementation (e.g. data conversion, production cutover).

18. Reconcile the system implementation approach to the requirements, updating the requirements and architecture as needed.

19. Define, at a high level, the approach to field support (e.g. product release distribution, on-going training, production problem management).

20. Reconcile the requirements to the field support approach, updating the requirements, architecture, and system implementation approach as necessary.

21. Write the detailed process descriptions.

22. Perform ambiguity reviews of the process by non-SME’s (Subject Matter Experts).

23. Resolve the generic ambiguities (e.g. dangling else’s, ambiguity of reference).

24. Perform ambiguity and content reviews by SME’s.

25. Resolve the issues identified.

26. Model the process requirements using model based testing (e.g. Cause-Effect Graphing).

27. Perform a logical consistency check of the models within and across processes.

28. Design the test cases from the models.

29. Review the test cases with the process authors.

30. Review the test cases with the users, customers, and/or other SME’s.

31. Resolve issues, as they are identified, from steps 26 to 30.

32. Finalize the data model (i.e. inventory of attributes and the domain and relational rules for each attribute).

33. Reconcile the process model to the data model.

34. Complete the details of the other classes of requirements.

35. Reconcile the detailed requirements against the Objectives.

36. Reconcile the detailed requirements against the scenarios.

At this point you now have a detailed Requirements Specification that has been fully validated against the Objectives, the scenarios, the design, the implementation approach, and the field support approach.

You also have a set of test cases that fully represents all of the functionality in the requirements. By having the users/customers review these during the requirements definition phase, User Acceptance Testing has effectively been moved up to a point prior to the start of coding.

Looking at the standard project life cycle below, you see that the process is inherently sequential. By writing detailed requirements the project proceeds with much more concurrency. By moving testing earlier in the project scrap and rework have been minimized.

[image: image6]
Standard Project Life Cycle

[image: image7.emf]Test

Requirements

Test Design

Test Code Code

Design

Requirements

Write User

Manuals

Write Training

Manuals

Delivered

System

Time

Test

Requirements

Test Design

Test Code Code

Design

Requirements

Write User

Manuals

Write Training

Manuals

Delivered

System

Time Time

Project Life Cycle with Detailed Requirements and with Integrated Testing

 Project Methodology Guidelines (PMG) - Naming Conventions

To be comprehensible, names must be more than simple labels. They must carry meaning; meaning that conveys something about the contents of the item. This is especially true in complex systems since they contain hundreds, even thousands, of items to be named. To ease the burden of learning the PMG.’s data structures, fairly strict naming guidelines were defined. These are in two classes:

1. Product Types.

2. Product Qualifiers.

 Product Types:

There are four words used to “type” products, therefore showing class membership. They are always used consistently:

1. Plan.

2. Specification.

3. Library.

4. Report.

A product name ending in “Plan” (e.g. Project Plan, Department Plan) always means the product describes the tasks, dependencies, resources, schedules, budgets, and assumptions for some activity.

A product name ending in “Specification” always means it contains the description of or “blueprint” for, something built or to be created (e.g. External Specification, Hardware/Software Configuration Specification).

A product name ending in “Library” means the name stands for the actual product built (e.g. Program Library).

A product name ending in “Report” always means that the product documents what happened during some activity and how well it went (e.g. Status Report, Phase Summary Report, Test Report).

There are a few documents in the PMG which do not end in one of the four (e.g. Project Journal) but most fall within these four categories.

 Product Qualifiers

The PMG products are further delineated by qualifiers that:

1. Partition the System – i.e. identify sub-classes.

2. Qualify the Status of a Product.

The product qualifiers partition the system via five sets of qualifiers:

1. Production, Project.

2. Current, New.

3. System View, Subsystem View.

4. Manual, Automated.

5. Customer, Vendor.

“Production” means the version of the product currently in use in the day to day operations (e.g. Production Program Library).

“Project” means the version being created by the project now underway (e.g. Project Program Library).

“Current” means that the product describes the existing production version or that portion of it applicable to this project (e.g. External Specification: Current).

“New” means that the product describes the version being created by this project to replace the current version (e.g. External Specification: New).

“System View” means that it pertains to that portion of the product which describes the whole system as a single item.

“Subsystems or Subsystem View” means that it pertains to that portion of the product that describes a part of the system (e.g. a given collection of programs run at one time; a department).

“Manual” means that it pertains to that portion of the product describing what people do.

“Automated” means that it pertains to that portion of the product describing what the computer does.

“Customer” means that it pertains to an activity that the purchaser of the system must do.

“Vendor” means that it pertains to an activity that the system house must perform.
 Status Qualifiers

The status qualifiers describe the state/status of the product, such as the level of detail it contains. These qualifiers are appended to the end of the data flow names or totally comprise the data flow name. Among these are “Preliminary”, “Genera”, “Detailed”, “Initial”, and “Final” which all describe levels of detail. Others such as “Reviewed”, “Tested”, “Reconciled”, “Validated” and “Resolved” imply that the contents have passed some approval process.

These qualifiers are used in combinations to further delineate a product’s contents. “External Specification: New Subsystem View Automated Preliminary” means that this data flow contains the description of the replacement version of the computer portion of the system and that it is just at a high level. Clearly this naming process results in awkward sounding names, but they are not meant to be read as a novel. They are designed to convey as much information as possible and to aid in finding them in the dictionary.

Table 1 summarizes the various qualifiers discussed. The vast majority of dictionary entries are just compositions from these qualifiers.

Table 1

 Product Types

Product Qualifiers - Partitioning
 - Plan

- Production/Project

 - Specification

- Current/New

 - Library

- Manual/Automated

 - Report

- System View/Subsystem View

- Customer/Vendor

 Product Qualifiers - Status

- Additional

- Revised

- Completed

- Tested

- Coordinated

- Validated

- Formatted

- Updated

- By Release

- Initial, Final

- Installed

- Preliminary, General, Detailed

- Modified

- Prioritized

- Proposed/Approved
- Reconciled

- Resolved

- Reviewed

 Structuring the Name

The names must be structured in such a way that when the data dictionary entries are sorted, the list comes out in a meaningful order. For example, if you put the qualifiers first then all the objects which contained the word “Preliminary” would come out together – e.g. Preliminary Project Plan, Preliminary External Specification, Preliminary Data Conversion Specification. The names must be structured such that the class/sub-class is first, then the level of detail qualifier is second, and the state/status qualifier is last – e.g. Project Plan Preliminary Proposed. While a bit awkward sounding it will result in all of the objects containing the phrase “Project Plan” being together in the dictionary, with the master object (Project Plan) heading the list. Therefore, the full definition of what is in a Project Plan would be the first entry. Subsequent entries would focus on the meaning of qualifiers in the context of that object. In the case of Project Plan Preliminary Proposed, it would be defined as the high level plan, for the entire project, that has not yet been approved by Management.

End – PMG Naming Conventions
Requirements

Design

Code

Test

Delivered

System

Write Training

Materials

Write User Manuals

PAGE
4
© Copyright Bender RBT Inc. 2014

